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FOREWORD 

This Technical Memorandum was prepared by LMSC/HREC for NASA/ 

MSFC under Contract NAS8-20387, entitled !"on-Linear Dynamic Analysis 

of Structures." 

This report  is Volume I11 of three  volumes which comprise  the Final 
Report  under Contract NAS8-20387 as follows: 

Volume I - "Synthesis of Structural  Damping,!' 
C. S. Chang and R. E. Bieber (LMSC 
HREC A783975) 

Volume 11 - "Nan-linear Dynamic Analysis,'I by R. 0. 
Hultgren (LMSC/HREC A783963) 

Volume 111 - "A Study of Hereditary Springs in Relation 
to Hysteretic Damping," by  G. A. Ramerez  
(LMSC/HR.EC A78 32 0 1 ) 
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INTRODUCTION 

There  a r e  two mathematical models which a r e  commonly used to 

represent  the restoring force in a spr ing-mass system showing hysteret ic  

damping. 

is t a k e n a s  

The f i r s t  is the complex stiffness model where the restoring force 

F(x) = (a + ib)x 

where a and b are  constants. The second is the frequency dependent damping 

model where the force is taken as 

h F(x) = - 1; t r x  
0 

where h and r a r e  constants. Both models yield an  energy loss per  cycle 

proportional to amplitude square and independent of frequency under forced 

sinusoidal motion. 

By considering a combination of springs and dashpots, Caughey 

(Reference 4) introduced a third model giving the restoring force as 

t 

F( t )  = rx(t)  - A [ Ei [- t (t - T j - & x ( T )  dT 

0 

where  r and A a r e  constants and Ei(u) is the exponential integral. 

a l so  d iscusses  the deficiency of the above first two models. 

Caughey 
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In this report  we investigate the hysteretic spring and find that ,  under a 

suitable choice of the memory function, energy loss per  cycle proportional to 

amplitude square and independent of frequency for a spring-mass sys tem 

can be predicted. 

models for the restoring force. 

by Caughey in  Reference 4. 

considcrations a r e  independent of Caughcy's representation of springs and 

dashpots. 

that is given by a polynomial of even powers of the amplitude and independent 

of frequency. 

We find four such functions which a r e  equivalent to four 

One of these of course,  is the one proposed 

However, we must  mention that our  mathematical 

In addition, we find that we can predict energy loss per  cycle 

2 
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Section 1 

HEREDITARY SPRING 

Let us recall  that a relation written a s  

t 

Z(t) = M [f(T); b] 
-00 

means that Z depends on the values taken by one o r  m o r e  functions of the 

t ime,  f(T), in the interval between -00 and the present t ime,  t. The quantities 

Z a r e  said to be functionals of f(r) and a r e  also functions of t and the pa ram-  

e t e r  b in the ordinary sense (cf. Volterra in Reference I). 

It is known that the force displacement relation of a l inear spring is 

given by 

F = r x  

where  F is the force,  r the spring constant and x the displacement (or 

elongation) measured f r o m  some reference position where the force is equal 

to zero.  

the force displacement relation of the spring has the general fo rm 

We wish to explore some of the m o r e  obvious consequences when 

F(t)  = rx( t )  4- & 
-00 

i. e. , the force depends not only on  the actual displacement but a lso on the 

values taken by the displacement in the interval between -00 and the present 

3 
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time, t. 

spring, i. e. , a spring with memory. 

7 E ( - c o ,  t ) ,  determines the history of the displacement x (the p r imary  history), 
and the function F(t)  determines the history of the force F (the hereditary 

history). 

xd(T) of the displacement x defined by 

Equation (1 -2) is the force displacement relation of a hereditary 

It is then said that the function x(T), 

We often find it more  convenient to introduce the difference history 

Let us use the convention that whenever the argument variable t is not 

exhibited, i t  means that the value of the parameter  is that a t  the present  

t ime t. 

We may wri te  Equation (1-2) in the fo rm 

-00 
t 

= r x  t d  x (7); x -[. 1 
-co 

We r e m a r k  that fo r  a spring which has always been held at  a constant value 

x ,  the difference history x (7) becomes the zero history xd(7) 0. d 

Under the proper  smoothness conditions, the functional d-can be ex- 

panded in  a se r i e s  analogous to a Taylor's s e r i e s  (Reference 1) and i f  a l l  the 

t e r m s  in it of higher order  than the f i rs t  can be neglected, we obtain a linear 

functional, i. e. , 

t t 

4 



LMSC/HREC A783201 

where the kernal ,  c p ,  is a continuous function of t ,  T, and x. Thus, for this 

special  case  Equation (1-4) reduces to 

F = rx  t 1 <p(t, T,X) xd(7) dT 

-00 

W e  shall  fur ther  assume that the kernel  Cp satisfies a n  o r d e r  condition of the 

f o r m  

Thus,  in Volterrals  terminology, (Reference 1) &-is a l inear functional with 

o rde r  of continuity d .  Now in Reference 2,  Vol terra  has proven that with the 

order-condition, Equation (1-7), F will be a periodic function of t whenever 

x(t) is a periodic function (principe du cycle ferme) i f  and only i f  the kernel 

function <p depends on the two variables,  t and 7, through their  difference, 
t - 7. 

ing that F is periodic when x is periodic. 

the nature we assume he re  "invariable hereditary. 

We shal l  delimit the the class  of spring under consideration by a s sum-  

Volterra  calls the heredi tary of 

It follows that under the above assumptions Equation (1-6) has  the 
reduced f o r m  

It is convenient to introduce the change of variable 

s = t - r  1 o s s  coo 

5 
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and write Equation (1-8) in the form 

F = rx t 1 p(s ,x)  x $) (9) ds 

where 

x (t) ( 5 )  = x (t - s) - x (t) d 

Let us further introduce the function @(s,  x) through 
~ .. ~ 

W s ,  x) = -Jmq(A, x)dA 

S 

whence 

We note that in view of Equation (1-12) 

Lim @(s,x)  = 0 
S-00 

(1-10) 

(1-11) 

(1-12) 

(1-13) 

(1-14) 

Introduction of Equation (1 -13) into Equation (1-9) and integration by par t s  

yie Ids 

9 
d 

@ ( S , X )  x ( t  - S) ds J F =  r x -  

0 

(1-15) 

where we have used Equation (1-14) and that in  view of Equation (1-11) 

6 
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d (t) d - x (s) = -&- x ( t  - 5 )  ds 

Let us further assumc that the kernel function can  be approximated 
2 

by a Taylor s e r i e s  expansion about x = 0 and retain only terms up to x , i. e . ,  

we a s sume  

I 
It follows that with 

becomes 

given by Equation (1 -1 6 ) ,  the force displacement relation 

If we take the memory functions !Pl and P2 to be zero,  then we have 

(1-18) 

7 
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Section 2 

E N E R G Y  LOSS PER CYCLE 

Let us assume as a displacement history 

X(T) = A sin (UT++) 

where 

x( t  - s) = A s in  (at 4-4) c o s w s  - A cos (& t4) s i n u s  (2-2) 

Substituting Equation (2 -2) into the force displacement relation, Equation 

(1 - 1 7), yields 

1 1 
F(t) = A s in (& t4) [r t o Y o  (0) t A o  sin(wt t4) Y1 (0) 

2 2 

2 t A osin(wt  t4) t A cos (at t4) 
2 

4- Aw sin(wt tt$) Y1 (a) t A o s in  (at 

(2-3) 

where 

8 
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The energy loss pe r  cycle corresponding to the history,  Equation ( 2 - l ) ,  is 
given by 

T 

Performing the integration of Equation (2-6), we obtain 

r 1 

2 
W e  note that the absence of Y1 (0) i n  Equation (2-7)  implies that for the 

history,  Equation (2-1), the t e r m  

does not contribute to the energy dissipated per  cycle. 

Suppose that we were  to require that under the history,  the heredi tary 
2 spring give a n  energy loss per  cycle that was proportional to A 

ent of 0 f o r  all w>O. 

the memory  function, Uf2(s)  must be equal to zero and that 

and independ- 

Inspection of Equation (2-7) shows that for this spr ing 

1 2 
YO(0)  = 

Now we know that 

9 



LMSC/HREC A783201 

0 
where 

(2-8) anc?(2-9), it follows that 

(a) is the Four ie r  cosine t ransform of @o(s). In view of Equations 

1 0 

2 
r (0) = - 

0 
(2-10) 

o r  equivalently 

B 
0 

0 

2 
r (0) = - 

where  B is a positive constant. Formally then, we would 

co 

%(s) = B 1 ‘Os a Os do 
0 

(2-1 1) 

have 

(2-12) 

value 
However, the integral  on the right-hand side of Equation (2-12) has  the 

f c0;as do=@ 
0 

(2-13) 

independent of 

such  a spr ing.  

s. This means that our  considerations so far cannot yield 

10 
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Consider the memory function given by 

CU>O (2-14) 

where Bo is a positive constant and Y (as) is Weber's Bessel  function of the 0 
second kind of o rde r  zero. It can be shown (Reference 3) that 

We have for  O<or/w<O.l, 

< 1.005 1 1.0 < (2-16) -.. 

Thus by choosing wo(s) to be given by Equation (2-14) for  O<cu/w<O.l, the 

energy lost  per  cycle is essentially proportional to A2 and independent of W. 

Moreover,  i f  we further choose 

where B2 is a positive constant,the energy loss pe r  cycle, Equation (2-7),  is 

given by 

2 4 
A W = K o A  + K 2 A  (2-18) 

11 
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where 

U 

- 1/2 ' K2 = 1 /2  (2-19) 

Thus, for  O < Q / o < O . l ,  the choice of Equations (2-14) and (2-17) for !Po(s) 

respcctivcly, yields a n  energy loss per  cycle which is independent of 0 and 

"non-linearI1 in  A . 2 

Considering that in the force-displacement relation of the heredi tary 

spr ing,  Equation (1- l?) ,  the term associated with the memory function a1(s) 
does not contribute to the energy dissipated pe r  cycle, we might choose 

q ( s )  = 0. It follows that the force-displacement relation 

d Yo(aS)-  d s  x (t - S )  d s  J F(t) = rx(t) t Bo 

0 

(2-20) 

will,  under the history,  Equation (2-1), and O<Q/o<O.l, yield an  energy 

dissipated p e r  cycle that is linear in  A2 and independent of W, while the 

fo rce  -displacement relation 

\ 

00 
d F(t) = rx(t) t Po t B2 x2(t)] 1 Yo(Qs) ds x (t - s )  d s  (2-21) 

0 

2 will  yield a n  energy dissipated pe r  cycle which is non-linear in  A 

independent of 0. 

and 

Let 

(2-22) 
J S 

1 2  
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Then 

- - - /'..... ds qn(e) de 
0 0 

- - - 1 la cP,(t) s inut  d t  , n = 0 , 2  
0 

0 

Equation (2-7) now reads 

1 AW = - n A  2 [A0(u) + $ i2 (04 

I where 

An(w) = la cp n (s)  sinus ds 9 n = 0 , 2  
0 

(2-23) 

(2-24) 

(2-25) 

For the choice 

1 
q0w = B~ e -X;CUS ( 1 - e -Cr~)-l = 2 B O ( s i n h q ) - l  , a>O (2-26) 

where Bo is a constant, we  have 

1 3  



w tanh (n-) BO 1 

ho(N = - 2a, CY 

For w/aZ 6 .  5/m, we have 

For the choice 

we have 

For the choice 

we have 

(2-28) 

( 2 - 2 9 )  

(2-30) 

(2-31) 

(2-32) 

14 
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1 
For  o/o!>lO and the choice of Equation (2-31), AO(o) becomes 

1 
ho(o) - Bo , o/a>lO (2-33) 

$or each one of the choices of cP,(s), Equations (2-26) ,  (2-29) and (2-31), 

the energy loss per  cycle will, for some range of 0, be proportional to A 
and independent of frequency. 

2 

Fo r  q o ( s )  given by Equation (2-26),  we have 

CYS log t a n h  4 B ~  = - - a 

F o r  <p ( 8 )  given by Equation (2-30), we have 0 

cos Ly 2 d[ = - Bo C i  (CIS) W 0 ( s )  = Bo 
4 

S c 

where C i ( a s )  is the cosine integral. 

F o r  Cp (s)  given by Equation (2-31), we have 0 

(2-34) 

(2-35) 

(2-36) 

where Ei( -Qs) is the exponential integral. 

15 
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Section 3 

EQUATION O F  MOTION FOR A BEAM I 

Under the change in variable 7 =  t - s we can wri te  the spring force- 

displacemcnt relation, Equation (1 -18) ,  in the form 

F(t) = rx(t) t - 7 )  3 x(7) d 7  (3-1) 

where W (t) is any one of the memory functions discussed in  the preceeding 

s ec t io n. 
0 

Let us consider a beam made of material  that has  a s t r e s s - s t r a in  

I relation of the fo rm 

where o(x,  z , t )  and ~ ( x ,  Z , T )  a r e  the s t r e s s  a t  the’present t ime and engineer- 

ing s t r a in  at the generic time 7 a t  a point P(x, z) located at a distance z f rom 

the neutral  axis. 

the beam at the generic t ime 7. 

f o r e  deformation remain  plane a f te r  deformation] it can be established that 

Let P ( X , T )  be the radius of curvature of the neutral  axis of 
With the assumption that plane sections be- 

(3-3)  

F r o m  this we find 

16 



~ ~~~~ 

LMSC/HREG A783201 

We may therefore write Equation (3-2)  in the form 

I The bending moment, M(x, t), at the point x may then be obtained f rom 

I 

as 

I where I(x) is the moment of inertia of the beam. 

- 
The relation between the displacement y ( x , ~ )  of the neutral  axis of the 

beam and P(X,T) is given by 

where a p r ime  indicates partial  derivative with respect  to x. 
that  

It follows 

17 
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where a dot over the quantity indicates the par t ia l  derivative with respect to 7. 

It is customary to assume that the displacement history Y(X,T) of the 

neutral axis of the beam is such that 

for  all 7st. Using Equation (3-9) we may approximate Equation (3-7) by 

and Equation (3-8) by 

(3-10) 

(3-11) 

Substitution of Equations (3-10) and (3-11) into Equation (3-6) yields 

'vo(t -7) ;'(X,T) d 7  
I I  

M(x,t)  = EI(x) y (x, t) t 
-00 

(3-12) 
t 

18 
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and write Equation (3-12)  as 

(3-14)  1 -  I t  

M(x, t) = EI(x) Qo(t -7)  ( ~ ~ 7 )  d 7  t M(x,t)  
-00 

I 
Note that had we taken the partial  derivative of l/p(~,~) with respect 

to 7 "after" we had made the approximation by using Equation ( 3 - 9 ) ,  we would 

have lost  M(x, t). 

of Equation (3-9)  does not yield sufficient grounds for the neglect of this te rm.  

In addition, a little thought will show that the assumption of Equation (3-9)  

and the assumption used to write Equation (3-3)  , i. e. , plane sections remain 

plane, are  indeed independent of each other. Therefore,  the grounds (if they 

exist) for neglect of M(x,t)  will have to be sought elsewhere. 

A 
Moreover, at this stage of the formulation the assumption 

A 

. The equation of motion of the beam may now be obtained f rom 

( 3 - 1  5) 

where p(x) is the mass density per  unit length. Introducing Equation (3-14)  

into (3  - 15) ,  we obtain 

(3-16)  

19 
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as the equation of motion of the beam. 

A 
Suppose we had found grounds for the neglect of M(x, t). The equation 

of motion would then be 

(3-17) 

Let us  consider the case  of f ree  vibration, i. e . ,  f(x, t) = 0,  and 

assume the solution of Equation (3-17) in the fo rm 

(3-18) 

I Substitution of Equation (3-18) into (3-17), with f (x , t )  = 0 ,  yields 

This  equation suggests that i f  X is the solution of 

d2X 2 EI(x) 7 - P(X) s;! X = 0 d2 >[ d x ]  
(3-20) 

then Equation (3-18) will be the solution to the homogeneous equation of (3-17) 

i f  T(t)  is the solution of 

(3-21) 

20 
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When the beam is subjected to homogeneous boundary conditions, Equation 
(3-20) has a n  infinite number of solutions X. (i = 1 , .  . ,a), i, e. , Xi a re  the 

eigenfunctions of 
1 

2 - p ( x ) P i  Xi = 0 

We then have, instead of Equation (3-18), 

(3-22) 

(3-23) 

where Ti(t) a r e  now the solutions of 

T. (7) d T  = 0 (3-24) 1 
2 t 

d Ti  d 

dt2 

subject to prescr ibed initial conditions. 

beam is governed by Equation (3-17), normal uncoupled modes exist but they 

a r e  damped. 

Thus, when the vibration of the 

If instead of Equation (3-17) we have Equation (3-16), then separation 

of var iable  technique is not applicable since we have a non-linear integro- 

differential equation. 

it is sense less  to talk about normal modes of vibration for the beam. 

The solution must then be sought by other means and 

By assuming that the hereditary effects i n  Equation (3-24) pr ior  to a n  

instant t ct a r e  negligible and taking to = 0 we can use  Laplace t ranform 

techniques to solve Equation (3-24). 
the inverse  t ransform of 

0 
The problem then reduces to finding 

21 
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(3-25) 

I where p is the Laplace t ransform parameter  and a b a r  over  a quantity denotes 

the Laplace transform. Thus, we have 

( 3 - 2 6 )  

where 

E quat ion (3 - 26) with 

is the Bromwich contour integral. The evaluation of the integral ,  

@o(t -7) = - Bo Ei [-CU(t -T ) ]  

has been obtained by Caughey (Reference 4). 

The longitudinal vibrations of a rod a r e  governed by the equation 

(3-27) 

(3-28) 

where p(x,  t) is the mass density pe r  unit volume and u(x, t )  is the longitudinal 

displacement. The s t r a in  is now given by 

d 
ax €(X, t) = - u (x, t) (3-29) 

22 
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The s t r e s s  -displacement relation is now given by 

#o(t -7) - a x  a - a7  aU d ~ ]  (3-30) 

-00 

To within the f i r s t  o rder  in au/at ,  the mass density pe r  unit volume is 

approximately constant in its t ime variable. 

Equation (3-25) into (3-28) we obtain 

Thus, upon substitution of 

2 where C 
(3-31) in the form 

= E/p. Concentrating on steady s ta te  we seek  solutions of Equation 

u(x, t) = X(x) T(t)  

Thus Equation (3-31) separates  into the two equations, namely 

and 

t 

d2T t R 2  [ T t  7 

(3-32) 

(3-33) 

(3-34) 

Thus,  normal  uncoupled damped modes exist  for  longitudinal vibrations. 

23 
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Section 4 

CONCLUDING REMARKS 

In a rea l  vibratory sys tem described by a spring mass  system, the 

restoring force of the "spring" is not entirely conservative, Under cyclic 

deformation of the spring, mechanical energy is consumed. The presence 

of such dissipative forces is generally described by the general t e r m ,  

s t ructural  damping. Forces  due to s t ructural  damping a r e ,  as a rule,  small, 
I but often their  presence affects the dynamic behavior of a vibratory system. 

It is generally accepted that when s t ructural  damping is caused by the 

mater ia l  of the spring in  a spring-mass system, the hysteresis  of the spring 

mater ia l  under cyclic deformation is responsible for the energy dissipation. 

P r e c i s e  measurements  on the s t r e s s  -s t ra in  relationship of most mater ia ls  

show that even at s t r e s s  levels much below accepted elastic limits cyclic 
straining will produce a hysteresis  loop. 

Many experimentalists have confirmed through their  experiments that 

numerous engineering mater ia ls  will,  for a wide range of frequency, show 

that the energy loss  per  cycle is proportional to the square of the strain and 

independent of the frequency at  which the s t r a in  is applied. 

We have shown that by considering a hereditary spring, energy loss per  

cycle (proportional to amplitude square and independent of frequency) can be 

predicted with sufficient accuracy provided we choose an  appropriate memory 

function. 

point out that  a n  equivalent representation of our heredi tary spr ing by an  

appropriate  combination of springs and dashpots need not exist. 

Four  of these memory functions were  found. It is imperative to 

The equation of motion for a beam under the Euler -Bernoulli hypothesis 

The s t ress -s t ra in  relation for the beam mater ia l  was was briefly discussed. 

24 
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without justific tion othe t h  n by a n  logy, taken to be in the same fo rm as 
the hereditary spring. 

I In a continuous sys tem the energy dissipated must,  according to the 

principle of conservation of energy, be transformed into other forms of 

energy. 

heat. 

sys tem that shows hysteretic damping be investigated such that it be in 

accordance with all the conservation principles which unify continuum physics. 

In particular i t  must be obtained through proper thermodynamic considerations. 

In this ca se  the dissipated mechanical energy is t ransformed into 

This strongly suggests that the s t r e s s  -s t ra in  relation for a continuous 

It is strongly recommended that the constitutive equation for this mater ia l  

be obtained through a proper linearization of the constitutive equation of a n  

ideal mater ia l  under finite strain.  In this way all the methodological principles 

I which unify constitutive theory of non-linear continuum mechanics a r e  available 

in  o rde r  to a r r i v e  at the constitutive equation for  the ideal material .  

25 
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